S1 Table. Comparison of volumetric energy densities for fused cyclobutanes and petroleum-derived and renewable jet fuels

	Volumetric energy
Compound or fuel	density (MJ/L)
Cyclobutane, C ₄ H ₈	33.0^{a}
[2]-ladderane, C_6H_{10}	42.3 ^a
[3]-ladderane, C_8H_{12}	46.3 ^a
[4]-ladderane, $C_{10}H_{14}$	49.2 ^a
[5]-ladderane, C ₁₂ H ₁₆	51.4 ^a
Jet fuel (kerosene) ^b	35.06°
Bio-SPK ^b	33.2 ^b

^a Calculated using entropies of formation (Novak 2008) and estimated densities from ACD/Labs' PhysChem Suite software

Hemighaus, G., et al. (2004) Aviation Fuels Technical Review, Chevron Corporation.

Kallio, P., et al. (2014) Renewable jet fuel, Current Opinion in Biotechnology 26, 50-55

Novak, I. (2008) Ring strain in [n]ladderanes, J. Phys. Chem. A 112, 10059-10063.

^b This fuel is the most relevant to commercial aviation in the U.S. Bio-SPK, Bio-Derived Synthetic Paraffinic Kerosene, is a renewable jet fuel in use today (Kallio et al. 2014)

^c From Hemighaus et al. (2004)